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Abstract AMeDAS (Automated Meteorological Data Acquisition System) is a system that observes weather data
such as precipitation, temperature, etc. and consists of about 1,300 observation points in Japan. However, a small
environmental change such as relocation of an observation station and construction of buildings nearby it causes
a slight change of observation data. In this paper, we attempt to detect such changes on the observation station
environment from observed weather data using Convolutional Neural Network and training data synthesization. The
proposed method also tries to visually explain for predicted results using Guided Gradient-weighted Class Activa-
tion Mapping. Experimental results using synthesized weather observation data showed that the proposed method
successfully detected change points and demonstrated the range of interest to detect such changes in averaged
temperature change patterns.
Key words change point detection, visualization, time series data, weather observation data, convolutional neural
network, synthesization of training data with supervisory signal
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