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あらまし アメダス（Automated Meteorological Data Acquisition System: AMeDAS）は，降水量や気温などの気象
データを観測するシステムであり，全国約 1,300箇所に設置された観測点から構成される．観測地点の周囲の変化に
より観測データに影響が生じ，観測地点の変更が行われることがある．このとき，観測データに何らかの傾向の変化

がみられる場合は変更があった旨が公表されるものの，観測値に明確な変化がみられない場合は観測地点の変更が特

に公表されないことがある．このため，本研究では，畳み込みニューラルネットワークと訓練データの合成手法を用

いることで，観測された気象データの微小な変化から観測環境の変化の有無を識別する手法を提案する．また，提案

手法は，Guided Gradient-Weighted Class Activation Mappingを利用して，変化の有無の識別の際に注目された入力
データの範囲を可視化する．観測地点の移転を仮想的に再現した気象データを用いて実験を行い，提案手法が変化点

の検知を行えること，および，温度変化パターンにおいて着目する範囲の可視化を行えることを示す．
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訓練データ生成
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Abstract AMeDAS (Automated Meteorological Data Acquisition System) is a system that observes weather data
such as precipitation, temperature, etc. and consists of about 1,300 observation points in Japan. However, a small
environmental change such as relocation of an observation station and construction of buildings nearby it causes
a slight change of observation data. In this paper, we attempt to detect such changes on the observation station
environment from observed weather data using Convolutional Neural Network and training data synthesization. The
proposed method also tries to visually explain for predicted results using Guided Gradient-weighted Class Activa-
tion Mapping. Experimental results using synthesized weather observation data showed that the proposed method
successfully detected change points and demonstrated the range of interest to detect such changes in averaged
temperature change patterns.
Key words change point detection, visualization, time series data, weather observation data, convolutional neural
network, synthesization of training data with supervisory signal
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1. 背景と目的

気象観測データの長期的な蓄積は，気候変動のメカニズム解

明，将来予測や多様な気候モデルの解明のために不可欠である．

降水量などの気象情報を観測する目的として，地域気象観測シ

ステム（アメダス）が全国約 1,300か所に設けられている． 一
方で，地域気象観測においては，観測地点の周囲の環境の変化

（建造物の建立など）が生じたり，観測地点の変更が行われるこ

とがあり，この前後において観測結果にわずかな変化が含まれ

る可能性がある．上記のような変化によって観測値に何らかの

傾向の変化が明確にみられる場合は，変更があった旨が公表さ

れるものの，観測値に明確な変化がみられない場合はそのよう

な情報が特に公開されないことがある．しかし，全国規模の地

球温暖化現象と観測地点周辺の都市化の問題の区別，さらには

気候変動のメカニズムの正しい理解のために，上記のような変

化の発生を把握することは重要である．

本研究では，上記の様な観測環境の変化を，畳み込みニューラ

ルネットワーク（Convolutional Neural Network: CNN）[1] を
用いて検出を試みる．変化点検知を行う際は一般的に，正常な

モデルを学習し，予測値と実測値の差異に基づいて行う方式が

多い．これに対して提案方式では，観測値の非線形的な変化も

検出できるよう，変化の有無を直接推定するネットワークを学

習する．これにより，人間でも知覚が困難な観測値の微小な変

化をもとに，観測環境の変化の有無を予測することが可能とな

る．本研究ではまた，提案するニューラルネットワークが，入力

される気象観測データのどの範囲に着目することで変化点の検

知を行っているかを確認するため，Guided Gradient-weighted
Class Activation Mapping（Guided Grad-CAM）[2]を用いて
可視化を試みる．

なお，アメダスの観測環境が変化する，あるいは，観測地点

を移転する頻度は低く，十分な学習データを用意することは難

しい．このため，本研究では，著者等が先行研究で提案した方

式 [3]を利用し，近傍にある 2箇所の観測地点のデータを合成す
ることで学習データを人工的に生成する．これにより，変化点

検知を目的とする，教師信号を備えた十分な量の学習データを

生成することが可能となる．九州内 7都道府県の 35地点で観
測されたデータをもとに合成したデータを用いて実験を行い，

本手法で観測環境変化の検知が可能であることを確認した．

2. 関 連 研 究

近年，深層ニューラルネットワーク（Deep Neural Networks:
DNNs）が幅広い分野に応用される一方で，ニューラルネット
ワークを用いた推論や予測の根拠の提示に対する需要が高まっ

ている．このため，ニューラルネットワークの推論の過程や注

目領域を可視化する技術についての研究が行われている [4]～
[6]．DNNsの代表的なモデルの 1つである CNNにおいて，注
目領域を可視化する技術の一つとして Grad-CAMが提案され
ている [2]．Grad-CAM は，画像のクラス分類を行った際に，
CNNがどの画像領域に着目して推定を行ったかを可視化する
技術である. Grad-CAMでは，特徴マップの微分係数，すなわ
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図 1 入力データの生成

ち，ある画像領域に微小な変化を加えた際の推論結果への影響

が大きい場合にはクラス推定に与える影響が大きいと考え，特

徴マップの微分係数の平均を重みとした加重平均で得られた画

像を可視化画像とする．

3. 提 案 手 法

3. 1 基本アイデア

気象観測結果の変化の要因は，人工変動と自然変動に大別さ

れる．前者には，観測地点の移転や建物の建立など，局所的な

変動が含まれる．後者は，自然気候変動や，全地球規模の地球

温暖化の大域的かつ長期的な変動を指し，人工変動と比較する
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図 2 生成された入力データの例（移動窓のサイズ: 6 年）

と緩やかな変動となる．

本研究では，上記のような変化のうち人工変動を検出するこ

とを試みる．人工変動による観測データへの影響は非線形的で

あることが予測されるため，ニューラルネットワークの利用が好

適であると考える．著者らによる先行研究 [3]では，再帰ニュー
ラルネットワーク（Recurrent Neural Network: RNN）[7] を
用いて検出を試み，微小な変化を検知できることを確認してい

るが，推論結果の根拠の提示が困難であるという問題があった．

このため，本研究では，CNNによる変化点検知を行う手法を
提案するとともに，Guided Grad-CAMを適用することで注目
する範囲の可視化を試みる．

なお，本研究では，先行研究で提案した訓練データを人工的

に生成する方式 [3]を利用する．
3. 2 入力データ

アメダスの観測データは，降水量や風向，風速等の情報を含

む．本研究において観測環境の変化を予測するにあたり，降水

量や風速は分散が大きいため，気温を用いることとする．

図 1に，提案手法における入力データの生成方法を示す．ア
メダスは 1時間単位で気温を観測するが，観測された時系列変
化を直接利用するのではなく，1年分の観測データを 3ヶ月毎
の 4 シーズン（1～3 月，4～6 月，7～9 月，10～12 月）に分
け，各シーズンの代表的な気温観測値（時間単位：24次元）に
着目する．各シーズンの各時間ごとの平均値を取り，これをそ

のシーズンの代表的な気温の変化パターンとし，これを平均変

化パターンと呼ぶことにする．各年において，平均変化パター

ンを４シーズン分を用いた計 96次元の特徴量を入力値として
扱う．

提案手法で変化点の検知を行う際は，移動窓法により，対象

となる年間を注視として数年程度の期間の平均変化パターンを

切り出す．このため，図 2 に示すように，提案手法で用いる
CNNの入力は，移動窓のサイズを S 年とすると，S × 96画素

図 3 提案手法の構成（移動窓のサイズが 6 の場合）

表 1 提案手法におけるパラメータ

layer name output size kernel size padding
conv1 16 × 3 × 48 5 × 5 2
conv2 32 × 2 × 24 5 × 5 2
conv3 64 × 1 × 12 5 × 5 2
FC1 64 -
FC2 2 -

図 4 観測地点の分布

の画像として表現される．

以上のようにしてデータを生成することで，天候による日単

位の変動をキャンセルしたデータを学習に利用することが可能

となる．すなわち，提案手法の入力データは，オリジナルな温

度観測データである 1次元の時間単位の時系列データはなく，
96次元の年単位の時系列データであることに留意されたい．

3. 3 CNNを用いた変化点検知モデル
本研究で提案する変化点検知手法は，図 3および表 1に示す

構成をとるニューラルネットワークである．3. 2節で述べた移
動窓内の平均温度変化パターンを入力とし，移動窓の中心に位

置する年間における変化の有無（2種類のクラス）を出力とす
る．なお，移動窓の中心以外の位置で変化が生じている場合は，

変化無しとみなすこととする．

提案手法で利用する CNNは，3層の畳み込み層の後ろに２
層の全結合層を含む比較的な単純な構造を用いる．例えば，移

動窓のサイズが 6の場合に畳み込み層では，各層を通過するご
とに，画像サイズを 3 × 48，2 × 24, 1 × 12と縮小させる一方
で，16，32，64とチャネル数を増加させる．このため，畳み込
み層を適用した後に 64枚の特徴マップが生成されることとな
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図 5 変化点検知の正解率（左上から順に，大分，熊本，宮崎，佐賀，長崎，鹿児島，福岡におけ

る結果を表す）

る．すべての中間層において活性化関数には ReLUを用い，出
力層では softmax関数を用いる．

3. 4 Guided Grad-CAMによる視覚的説明

提案手法が変化の有無の予測を行う際に参照する平均温度変

化パターンの範囲を明らかにするために，可視化技術を用いて

視覚的な説明を試みる．本研究では，視覚的説明の代表的な手

法の一つである Guided Grad-CAMを利用する [2]．この手法
では，特徴マップの加重平均によって算出される Grad-CAM
と，Guided backpropagation [8]とを併用する．Grad-CAMが
マップ単位の算出であるのに対して，Guided backpropagation
ではピクセル単位の貢献量を算出することが可能となる．

Grad-CAMは，クラス cの k 番目の特徴マップ Ak におけ

る貢献度 αc
k を以下の式により算出する．

αc
k = 1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(1)

ここで，yc はクラス cの確率スコア，Ak
ij は k番目の特徴マッ

プにおける画素 (i, j)の強度を示す．クラスの確率スコアを特
徴マップの強度で微分し，その勾配の全画素における平均を算

出することで αc
k を算出する．αc

k が高いほど，クラス cにとっ

て特徴マップ Ak が重要であることを意味する．

次に，式 (1)で算出した貢献度を用い，これを重みとして特

徴マップの加重平均を算出することで，Grad-CAM のヒート
マップ画像 Lc

Grad−CAM を算出する．

Lc
Grad−CAM = ReLU(

∑
k

αc
kAk) (2)

Guided backpropagationは，各ニューロンが固有の特徴を
検出する検出器であると考え，各ニューロンがどのような特

徴を検出したかに着目する．すなわち，勾配の平均をとるか

わりに正値のみを入力まで伝搬させることで可視化を行う．

Guided Grad-CAMは，上記のGuided backpropagationの結
果に Grad-CAMの出力を重ねることで，高解像度とクラス依
存性を考慮したヒートマップ画像を得る．

3. 5 変化点検知を目的とした教師信号付き訓練データの

合成

提案手法は CNNに基づくため，教師信号を用いて学習を行
う必要がある．しかし，アメダスの観測地点の移転などの変化

は希に行われるため，十分な量の訓練データを用意することが

困難である．このため，変化点検知を目的とした教師信号付き

訓練データを合成する [3]．これは，近傍（数十 km 程度）に
ある 2点の観測地点における観測データを結合することで，観
測地点を仮想的に移動させたことに相当する，教師信号付きの

訓練データを生成する方式である．2点の観測値の選択，およ

— 4 —



(a) 入力データ（平均気温変化パターン）

(b) 可視化された重要範囲

図 6 福岡のデータにおける可視化の例（左側 3 サンプルは移動窓の中央で変化無しと推定され
たデータであり，右側 3 サンプルは変化有りと推定されたデータ

(a) 入力データ（平均気温変化パターン）

(b) 可視化された重要範囲

図 7 長崎のデータにおける可視化の例（左側 3 サンプルは移動窓の中央で変化無しと推定され
たデータであり，右側 3 サンプルは変化有りと推定されたデータ）

(a) 変化無しと推定されたサンプル (b) 変化有りと推定されたサンプル

図 8 福岡における重要範囲の可視化画像の平均と分散

(a) 変化無しと推定されたサンプル (b) 変化有りと推定されたサンプル

図 9 長崎における重要範囲の可視化画像の平均と分散

び，2点の観測データを結合する年の選択により，生成に用い
る観測地点の数を増やすことで，指数関数的に訓練データの量

を増やすことが可能となる．これにより，実際の観測データに

おける観測環境の変化に関する情報の不十分さを補い，提案手

法で利用するニューラルネットワークの学習を行うことが可能

となる．

4. 実 験

4. 1 観測地点の仮想的な移転の検出性能の評価

3. 5節で述べた方法を，九州 7県の観測所 35カ所（図 4）で
観測されたデータに適用し，データセットの生成を行った．各

県 5 カ所の観測所で観測されたデータから 2 カ所の観測デー
タを選択し，ある時点で入れ替えることで変化を含む観測デー

タを生成した．1991年から 2016年までのデータを用意し，12
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月と 1月の間でのみデータの入れ替えを行った．このため，各
県あたり，20箇所 ×25時点 =500個のデータサンプルを作成
したこととなる．また，訓練用データと検証用データを分ける

ために，県単位での交叉検定を行った．移動窓のサイズ S は 2
年，6年，10年の 3通りを検証した．
実験結果を図 5に示す．横軸は学習における反復回数（epoch
数），縦軸は検証用データにおける正解率，すなわち，予測結果

と正解が一致した割合を表す．

総じて，移動窓のサイズが 6年（予測時点を挟んで前後 3年
の観測データを含む）の場合に最も正解率が高いことがわかる．

移動窓のサイズが 10年の場合は過学習が生じて汎化性能が低
下することがあった．2年の場合は，大分，宮崎，佐賀，福岡
の観測データにおいては，6年の場合に近い高い正解率を示し
たが，長崎において大幅に正解率が低下し，熊本および鹿児島

でも若干正解率が低下した．移動窓の設定指針の明確化は今後

の重要な課題である．

4. 2 入力データにおける重要な範囲の可視化

Guided Grad-CAMを用いて，変化の有無の識別に影響を与
えている気温変化の範囲の可視化を試みた．移動窓のサイズを

6年とした．変化点推定の正解率が比較的高かった福岡県，お
よび低かった長崎県において，それぞれ６つのサンプルを抽出

し，重要範囲の可視化を行った結果を図 6および図 7に示す．
それぞれの図において，左側 3サンプルは移動窓の中央で変化
無しと推定されたデータ，右側 3サンプルは変化有りと推定さ
れたデータである．入力データおよび可視化結果は 6 × 96 画
素の画像となるが，視認性を高めるために横方向にのみ拡大を

行った．重要領域の可視化結果では，濃色になるほどクラス識

別の際に重要であると判定された範囲であることを示す．ま

た，各クラスに識別された全データサンプルの可視化結果に対

して，平均とその分散を算出した結果を図 8および図 9に示す．
まず，変化が無いと推定されたサンプルに着目する．図 6お
よび図 7から，福岡および長崎の双方において，抽出されたサ
ンプルにおいては重要範囲の分布に明確な傾向がないようにみ

られる．しかし，図 8および図 9から，福岡のデータでは移動
窓内の 1，2，4，6年目の平均温度変化パターンが，長崎のデー
タでは移動窓内の 2，3，5年目のパターンが，それぞれ参照さ
れる傾向が強いことがわかる．

次に，変化があると推定されたサンプルに着目する．図 6お
よび図 8 から，福岡県では変化直前の年の 7～12 月の午前 8
時～10時の時間帯に注視が集中していることがわかる．また，
図 7および図 9から，長崎県では，4～6月の 8～10時や 13～
14時，7～9月の 8～10時など，変化の前後の年において同じ
時期の近い時間帯に着目していることがわかる．

一般に，温度変化の多くは日射と連動しており，特定の季節

の特定の時間帯に，例えば観測点が建物の影に入るなどの変化

が生じている可能性がある．また，建物や地形等の障害物によ

り特定の方向からの風が入りにくくなることで温度移流の効果

が変化する可能性もある．さらには，局地的な雨の降り方の相

違が反映された可能性も考えられる．

5. 結 論

アメダスの観測データをもとに，観測環境の変化を検知する

方式を提案した．本方式は，CNNを利用することで，3ヶ月ご
との平均気温変化パターンをもとに観測環境の変化の有無を識

別する．特に，Guided Grad-CAMの利用により，識別の際に
重要とされた範囲を可視化できる点に特徴がある．九州 7県で
観測されたデータをもとに実験を行い，提案方式が観測地点の

仮想的な移動を検知できること，および，注視範囲の可視化に

より，特定の季節の特定の時間帯の温度変化に着目して識別が

行われていることを確認した．

本論文では仮想の変化を含む気象観測データを用いて実験

を行ったため，今後，実際の観測データにおける有効性を検証

する．
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